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Abstract. The quantum covariances of physically transparent pairs of observables relative to two dimers
hosted in a solid matrix are exactly investigated in the temporal domain. Both dimers possess fermionic
and bosonic degrees of freedom and are dipolarly coupled. We find out and describe clear signatures
traceable back to the presence and persistence of quantum coherence in the time evolution of the system.
Manifestations of a competition between intramolecular and intermolecular energy migration mechanisms
are brought to light. The experimental relevance of our results is briefly commented.

PACS. 03.65.Ud Entanglement and quantum nonlocality – 61.72.Yx Interaction between different crystal
defects; gettering effect – 34.30.+h Intramolecular energy transfer; intramolecular dynamics; dynamics of
van der Waals molecules

1 Introduction

Over the last twenty years the ambitious goal of
performing decoherence-protected experiments aimed at
investigating the dynamics of a single or few atoms
or at manipulating the statistics of a single, material
or not, quantum harmonic oscillator has been success-
fully achieved [1–3]. The first conceptually seminal ex-
periments effectively based on the strong interaction of
a single atom with a high-Q cavity single photon [4], have
paved the way to the Cavity Quantum Electrodynam-
ics (CQED) research area [3]. Since then other physical
scenarios wherein physics at such a basic level could be
realized have been searched. Here we quote for instance
the area of trapped ions [1,2] where fundamental matter-
radiation interaction models have been successfully imple-
mented, the role of the electromagnetic field being played
by the oscillatory degrees of freedom of the confined ion
center of mass. Very recently, it has been moreover exper-
imentally demonstrated that the strong coupling limit of
CQED may be reached and also overcome in a circuit con-
sisting of a fully electrically controllable superconducting
quantum two-level system, the Cooper pair box, coupled
to a single mode of the quantized radiation field in an on-
chip cavity formed by a superconductive transmissive line
resonator [5,6].
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A common aspect of all these investigations is that
they provide the opportunity of testing quantum mechan-
ics at a very basic level. In this paper we wish to propose
another possible scenario of the same type in the context
of solid state physics. The natural or artificial presence of
defects in a solid host might in fact be exploited to inves-
tigate the radiationless dynamics of a microscopic system
composed by a pair of coupled defects [7–9]. Our scope
is to draw attention on such a solid state laboratory to
study simple bipartite systems (that is composed of two
subsystems) to bring to light the occurrence of quantum
signatures in the behaviour of appropriately chosen ob-
servables having a clear physical meaning.

It is worth to underline that this kind of investigations
are in the grasp of the experimental current setup poten-
tialities thanks to so called site selective laser techniques
today allowing to store induced excitations in a defect
placed at a prefixed lattice site at t = 0 and to resolve in
time its dynamical behaviour [10]. Moreover, in suitably
low-doped crystals wherein the probability of pair forma-
tion is of practical interest and different couples of defects
are effectively isolated from each other [11,12], the indi-
vidual study of the dynamics of a pair is in the current
experimental reach.

Thus we might have at our disposal the possibility of
realizing a system of only two coupled (possibly two-level)
defects, within which to fix an initial condition and to read
out the subsequent temporal evolution in search of con-
vincing hallmarks of quantum coherence manifestations.
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With this motivations we propose in this paper a sim-
ple fully quantistic model to describe radiationless en-
ergy migration processes between equal impurity centres
closely located in a solid possessing a low dopant concen-
tration. In our model each impurity center is thought of
as a molecule possessing coupled internal fermionic and
bosonic degrees of freedom. Moreover the two molecules
are assumed to interact by a dipole-like term. We prove
that the Hamiltonian model representing such a composite
system may be exactly treated starting from appropriate
initial conditions. Our main scope is to study the time
evolution of quantum correlations get established in the
molecule-molecule system highlighting the role of the in-
termolecular coupling strength against the intramolecular
one in giving rise to unexpected quantum signatures. It
is of relevance that investigating the microscopic origin of
macroscopic physical properties exhibited by novel mate-
rials incorporating optically active ions, not only provides
a piece of basic research but at the same time offers con-
ceptual tools to understand the underlying mechanisms
on which various applications rely [13].

This article is organized as follows. In the next section,
after presenting our Hamiltonian model and showing that
it can be exactly solved in its one-excitation subspace,
we compare the time evolutions of the superposition of
two appropriate states of the bipartite system, consider-
ing both the fully quantistic linear combination and the
fully classical one. A detailed investigation of the temporal
behaviour of the quantum covariances of suitable couples
of physically transparent observables pertaining to the two
molecules is reported in Section 3, while the experimental
relevance of these results is discussed in the subsequent
Section 4. Some conclusive remarks are formulated in the
final section.

2 The Hamiltonian model and one excitation
exact dynamics

The system on which we focus consists of two interact-
ing identical molecules closely located at fixed points in
a solid. Each molecule possesses internal degrees of free-
dom, behaving like a Pauli pseudo-spin 1

2 as well as vibra-
tional dynamical variables. For the sake of simplicity we
consider only one vibrational normal mode and for this
reason sometimes we refer to each molecular subsystem
as to a dimer. Let’s indicate by σ(i)

k (k = x, y, z) and a(i)

(a†(i)) the Pauli operators describing the electronic and vi-
brational degrees of freedom, respectively, relative to the
ith molecule. Assume that our physical system is governed
by the following Hamiltonian model:

H = H0 +HDD +H1 +H2 (1)

where

H0 =
1
2
ω0

(
σ(1)

z + σ(2)
z

)
+ ω

(
a†1a1 + a†2a2

)
(2)

is the free energy and

HDD = λ
(
σ(1)

x σ(2)
x + σ(1)

y σ(2)
y

)
(3)

describes a dipole-dipole like interaction between the two
molecules deprived of its diagonal term σ

(1)
z σ

(2)
z , being

mainly interested in contributions describing excitation
energy back and forth inter-passages. Finally, in order
to take into account intramolecular nonradiative energy
transfers, we introduce a direct coupling between the
bosonic and fermionic dynamical variables relative to each
molecule in the form

Hi = ε
(
σ

(i)
+ ai + σ

(i)
− a†i

)
(i = 1, 2) (4)

with σ
(i)
± = 1

2 (σ(i)
x ± iσ

(i)
y ). In (2) ω0 is the Bohr fre-

quency associated to the electronic levels of each single
dimer whereas ω is the frequency relative to its vibrational
normal mode. The form of Hi aims at describing the in-
teraction between vibrational modes and electronic levels
of the molecule. The scope we pursue in this paper is not
a detailed representation of a specific physical situation.
Rather we wish to catch a reasonable ingredient playing
an important role in energy exchange mechanism between
different degrees of freedom within a single molecule. Ne-
glecting the counter rotating terms, σ(i)

+ a†i and σ
(i)
− ai, in

equation (4) confines the applicability of the ideas of the
present paper to not too strong regimes (ε � ω0) where
in addition ω0 ∼ ω.

It is easy to prove that the total excitation pair number
operator defined as

N = N1 +N2 (5)

with
Ni = a†iai +

1
2
σ(i)

z +
1
2

(6)

is a constant of motion. This circumstance, as we shown
later in this section, gives us the possibility of exactly de-
coupling the two dipole-dipole interacting dimers provided
that the initial total excitation pair number is less than 2.
In order to do this let’s firstly introduce the unitary oper-
ator U given by

U = exp
{π

4

(
σ

(1)
+ σ

(2)
− − σ

(1)
− σ

(2)
+

)}
. (7)

It is easily demonstrable that

U †σ(i)
+ U =

1√
2

(
σ

(i)
+ + (−1)iσ

(j)
+

)
i = j = 1, 2 i �= j

(8)
and [H0, U ] = 0. Thus the canonical transformation ac-
complished by U leaves unchanged the free Hamiltonian
H0 and in particular σ(1)

z + σ
(2)
z being U †(σ(1)

z + σ
(2)
z )U ≡

σ
(1)
z + σ

(2)
z . Moreover, appropriately rewriting the inter-

molecular coupling given by (3) as function of σ(i)
± , it is

not difficult to prove that

U †HDDU = λ
(
σ(2)

z − σ(1)
z

)
. (9)

The meaning of (9) is that, as a result of the unitary trans-
formation U , the presence of HDD in the original micro-
scopic model H renormalizes the electronic frequency of
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the two identical molecules in a different way. As far as
the intramolecular coupling terms we immediately have

H̃12 ≡ U †(H1 +H2)U

=
ε√
2

[
(a1 + a2σ

(2)
z )σ(1)

+ + (a2 − a1σ
(1)
z )σ(2)

+ + h.c.
]
.

(10)

The existence of the constant of motion N above intro-
duced, implies that, starting from a state with a well de-
fined total number of pair excitations n, the dynamics of
the physical system here considered remains confined in
the finite-dimensional Hilbert subspace singled out by this
eigenvalue of the operatorN . If we consider the case n < 2
only, it is not difficult to convince oneself that the inter-
action operator H̃12 expressed by (10), may be, indeed,
effectively represented in the form

H̃12 =
ε√
2

[
(a1 − a2)σ

(1)
+ + (a1 + a2)σ

(2)
+ + h.c.

]
. (11)

We stress that H̃12 as given by (11) is not coincident with
the operator defined by equation (10) the latter one being
the restriction of the former in the Hilbert subspace under
scrutiny.

From now on we are, by hypothesis, within this pre-
fixed subspace.

Looking at (11) we may appreciate that H̃12, when
compared with the original not transformed operator
H1 +H2, describes a new situation wherein the fermionic
dynamical variables of each molecule get coupled with
both vibrational modes through the two different linear
combinations a1 − a2 and a1 + a2. This circumstance sug-
gests that, accordingly combining the vibrational dynam-
ical variables of the two dimers, we might succeed in de-
coupling the two dipole-dipole interacting molecules. If,
indeed, we introduce the unitary operator

T = exp
{π

4

{
a†1a2 − a1a

†
2

}}
(12)

satisfying the following transformation properties

T †a1T =
1√
2
(a1 + a2) (13)

T †a2T =
1√
2
(a1 − a2) (14)

we immediately obtain

T †H0T = H0 (15)

and

T †H̃12T = ε
[(
a1σ

(1)
+ + h.c.) + (a2σ

(2)
+ + h.c.

)]
. (16)

Summarizing we can thus conclude that, confining our at-
tention on the Hilbert subspace correspondent to total ex-
citation pair number less than 2, the action of the unitary
operator UT is to transform the microscopic Hamiltonian
model (1) into the following one

H̃ ≡ T †U †HUT ≡ H(1) +H(2) (17)

where

H(i) =
1
2
(ω0 + (−1)iλ)σ(i)

z + ωa†iai + ε
[
(aiσ

(i)
+ + h.c.

]
.

(18)
It is of relevance to underline at this point that the
advantage stemming from the canonical transforma-
tion accomplished by UT is that the new Hamiltonian
model (17) gets rid of the direct dipolar coupling term,
representing indeed a pair of fictitious non interacting
dimers. Since, in addition, the mathematical structure
of the resulting intramolecular coupling has the form
of the well-known exactly treatable Jaynes-Cummings
interaction [14], it turns out that the dynamics of
H̃ may be solved without any approximation. In
order to make clearer this statement, let’s suppose
that at t = 0 the system under scrutiny is prepared
in a state |ψ(0)〉 belonging to the one excitation
Hilbert subspace generated by the following basis B =
{|01, 02,+,−〉, |01, 02,−,+〉, |11, 02,−,−〉, |01, 12,−,−〉}
being |n1, n2, σ1, σ2〉 a common eigenstate of a†1a1, a

†
2a2,

σ
(1)
z and σ(2)

z , such that

a†1a1|n1, n2, σ1, σ2〉 = n1|n1, n2, σ1, σ2〉, (19)

a†2a2|n1, n2, σ1, σ2〉 = n2|n1, n2, σ1, σ2〉 (20)

σ(1)
z |n1, n2, σ1, σ2〉 = u(σ1)|n1, n2, σ1, σ2〉, (21)

σ(2)
z |n1, n2, σ1, σ2〉 = u(σ2)|n1, n2, σ1, σ2〉 (22)
ni = 0, 1, 2, ... σi = ±, u(±) = ±1. (23)

At any time instant t > 0 we can thus write

|ψ(t)〉 ≡ e−iHt|ψ(0)〉 = UTe−iH̃tT †U †|ψ(0)〉
≡ UTe−iH(1)te−iH(2)tT †U †|ψ(0)〉. (24)

Equation (24) immediately suggests that, knowing the ac-
tion of UT and T †U † upon the basis B, in order to eval-
uate the temporal evolution of the system we may take
advantage from the already known solutions of the Jaynes-
Cummings dynamics [14].

3 Quantum correlation effects

Exploiting the results presented in the previous section, we
now investigate on some interesting features characteriz-
ing the temporal evolution of the system under scrutiny
supposing, in accordance with the underlying assumptions
making (1) unitarily equivalent to (17), that at t = 0 only
one excitation is injected into the system. In order to bring
to light the appearance of quantum effects stemming from
the quantum correlations which get established between
the two dipole-dipole coupled molecules, we will concen-
trate our attention on two exemplary cases. In more detail
we suppose that the system is initially prepared in a sta-
tistical mixture or in a quantum coherent superposition of
the two states |01, 02,+,−〉 and |01, 02,−,+〉 both belong-
ing to the one excitation Hilbert subspace. Studying the
quantum covariance of the “stretching operator” of the
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two molecules as well as that of the dipole moments we
will put transparently into evidence interesting quantum
signatures directly traceable back to the establishment of
quantum correlations. First of all let’s observe that, taking
into account the transformation properties (8) and (13) it
is possible to prove that

|ψ1(t)〉 ≡ e−iHt|01, 02,+,−〉
= a(t)|01, 02,+,−〉+ b(t)|01, 02,−,+〉

+ c(t)|11, 02,−,−〉 + d(t)|01, 12,−,−〉 (25)

with

a(t) = cos
(
λ

2
t

)
cos

(
R

2
t

)
− λ

R
sin

(
λ

2
t

)
sin

(
R

2
t

)

(26)

b(t) = −i
[
sin

(
λ

2
t

)
cos

(
R

2
t

)
+
λ

R
cos

(
λ

2
t

)
sin

(
R

2
t

)]

(27)

c(t) = −2iε
R

cos
(
λ

2
t

)
sin

(
R

2
t

)
(28)

d(t) = −2ε
R

sin
(
λ

2
t

)
sin

(
R

2
t

)
(29)

where R =
√
λ2 + 4ε2 and λ� |ω0−ω|. Starting from (25)

and taking into account the Hamiltonian model given
by (1), it is easy to convince oneself that

|ψ2(t)〉 ≡ e−iHt|01, 02,−,+〉
= b(t)|01, 02,+,−〉 + a(t)|01, 02,−,+〉

+ d(t)|11, 02,−,−〉 + c(t)|01, 12,−,−〉. (30)

Thus, starting from the initial statistical mixture

ρ(0) =
1
2
(|01, 02,+,−〉〈01, 02,+,−|

+ |01, 02,−,+〉〈01, 02,−,+|) (31)

at any time instant t the state of the system can be written
as

ρM (t) =
1
2
(|ψ1(t)〉〈ψ1(t)| + |ψ2(t)〉〈ψ2(t)|). (32)

The state of the system at a generic time instant t assumes
on the contrary the form

ρS(t) = |ψ(t)〉〈ψ(t)| (33)

with

|ψ(t)〉 =
1√
2
(|ψ1(t)〉 + |ψ2(t)〉) (34)

if we suppose to prepare the system at t = 0 in the linear
quantum superposition

|ψ(0)〉 =
1√
2
(|01, 02,+,−〉+ |01, 02,−,+〉). (35)

Denoting by qi = α(a†i +ai) with α = 1/2ω the “stretching
operator” relative to the ith molecule, the quantity

Cq ≡ Tr{ρ(t)q1q2} − Tr{ρ(t)q1}Tr{ρ(t)q2} (36)

expresses, by definition, the quantum covariance of the
stretching operators of the two molecules. It is easy to
demonstrate that when we start from the statistical mix-
ture given by (31), these observables never correlate, that
is Cq(t) = 0 at any t. Vice versa, the stretching covariance
Cq(t) is governed by the temporal law

Cq(t) = α2 4ε2

R2
sin2

(
R

2
t

)
(37)

when we suppose our system prepared at t = 0 in the
linear superposition (35). Thus we find the interesting re-
sult that the quantity Cq(t) is apt to clearly distinguish
between the two different initial conditions. In the same
sense the covariance between the two dipole moments, de-
fined as

Cσ(t) ≡ Tr
{
ρ(t)σ(1)

x σ(2)
x

}
− Tr

{
ρ(t)σ(1)

x

}
Tr

{
ρ(t)σ(2)

x

}

(38)
provides another quantity helping to establish whether the
system makes its temporal evolution starting from the sta-
tistical mixture (31) or from the pure state (35). It is in-
deed possible to demonstrate that in the former case we
have Cσ(t) = 0 whereas, in the latter one,

Cσ(t) =
∣∣a(t)|2 + |b(t)∣∣2 . (39)

We wish to emphasize that (38) and (39) provide two ex-
amples of dynamical behaviour having genuine undoubt
quantum origin. This means that such a behaviour stems
directly and manifests the existence and persistence of
quantum coherence in the time evolution of the system. It
is of relevance to note that, at least in principle, any exper-
iment aimed at resolving in time such a behaviour might
be used to monitor the unavoidable progressive washing
out of these oscillations traceable back to the influence
of the environment. In other words one might hopefully
project an experiment providing a direct insight into a pro-
cess at the heart of quantum mechanics since one might
check not only the existence of an initial quantum co-
herence but also observe its progressive disappearance as
example of a decoherence phenomenon transforming the
quantum superposition into a statistical mixture.

4 Intra-, inter-molecular competition

The results achieved in the previous section may be put
in the following form

Cq(t) = α2 1
1 + ( λ

2ε )
2

sin2

⎛
⎝

√
1 +

(
λ

2ε

)2

εt

⎞
⎠ (40)

Cσ(t) = 1 − 1

1 +
(

λ
2ε

)2 sin2

⎛
⎝

√
1 +

(
λ

2ε

)2

εt

⎞
⎠ . (41)
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Equations (40) and (41) clearly show that if the system
composed by the two interacting defects starts from the
pure state (35), its evolution gives rise to the occurrence of
quantum correlations periodically varying in a very simple
way. The aspect we wish to stress is the dependence of the
amplitude of these oscillations on the ratio r = λ/2ε which
is a direct measure of the relative strengths between in-
termolecular and intramolecular energy exchanges. When
r = 0, even if the intermolecular energy exchange channel
is of course closed, the system indeed develops time depen-
dent quantum correlations between the two elastic degrees
of freedom, albeit initially absent. From a physical point of
view such a behaviour has a pure quantum origin directly
stemming from the initial quantum coherence between the
Pauli degrees of freedom. When r increases reaching val-
ues of the order of 10, the oscillation amplitudes of both
Cq(t) and Cσ(t) tend to vanish. As a consequence the po-
sition correlation becomes less and less visible, being ini-
tially absent. On the contrary the dipole correlation tends
to preserve its initial value. This behaviour clearly evi-
dences the occurrence and the growing up of competition
processes between intramolecular energy exchange mech-
anisms against those ruling non adiabatic intramolecular
energy exchanges. Thus, when λ� 2ε, Cq(t) is practically
equal to zero while Cσ(t) ∼ 1 at any time instant t.

5 Conclusive remarks

In this paper we have investigated a fully quantistic model
describing a simple possible radiationless energy trans-
fer process between two identical dopant centres possess-
ing both electronic and vibrational degrees of freedom.
The Hamiltonian term responsible for the excitation en-
ergy migration between the two matter subsystems has a
dipole-like coupling form.

We have exactly solved the quantum dynamics of our
Hamiltonian model in the one-excitation Hilbert subspace
investigating the temporal evolution of the correlations
get established between the two molecules. To this end we
have calculated and analyzed the stretching covariance
Cq(t) and the dipole-dipole covariance Cσ(t) between
the two molecules. The original results reported in this
paper prove to be attractive and intriguing both from
a qualitative and quantitative point of view. Studying
the evolution of quantum covariances of physically
transparent observables relative to the two molecules,
Cq(t) and Cσ(t), we have indeed brought to light the
possibility of distinguishing between two different initial
conditions, that is a classical statistical mixture or a
quantum linear superposition of two appropriate states
of the bipartite system. From a quantitative point of
view, moreover, it is interesting to point out that the
analysis presented in the previous section evidences
that measuring Cq(t) as well as Cσ(t) it is possible
to have an estimation of the ratio r = λ/2ε. The two
covariances are indeed sinusoidal functions whose am-
plitudes are directly related to r. Thus, measuring the

stretching covariance Cq(t), as well as the dipole covari-
ance Cσ(t), we may quantitatively estimate the relative
strength of the intermolecular and intramolecular interac-
tion mechanisms characterizing our physical system. We
wish finally to stress that, although the presence of envi-
ronmental effects has been neglected from the very begin-
ning, our analysis has however the merit of having singled
out a simple physical scenario, in the reach of the experi-
mentalists, wherein to look for evidences of the transition
between quantum and classical behaviour.
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fellowship given from the Ministero degli Affari Esteri (Italy)
and the Dipartimento di Scienze Fisiche ed Astronomiche,
Palermo University, for kind hospitality.
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